三角関数 2

三角関数は波である

自然界には様々な波があります。 みなさんが聴いている音は空気の波ですし、 光も波の性質を持っています。 他にも水面に立っている波もあるし、 コンピュータを動かしている電気(交流電力)も波になっています。
ところで、波の本質とは何でしょうか。 ある場所と違う場所を行ったり来たりしたり、 力が強くなったり弱くなったり、 明るくなったり暗くなったり、 濃くなったり薄くなったりなど、 波とは、あるところとあるところを往復している状態だということができます。 ですから、エンジンのピストン運動なども波なのです。
さて、ここで面白いことに三角関数は波を表すことができるのです。 直角三角形の辺の比にすぎない三角関数がどうして波になるのでしょうか?

三角関数のグラフ

さて、前回の計算例を思いだしてください。
下図のように、長さ A の直線と X 軸の角度がわかっていると座標 (x, y) を三角関数で表すことができました。

[座標値の分かった図]

ここで、計算をやさしくするために A の長さを 1 だと考えてみます。 すると、座標値は (cos(α), sin(α)) になります。

[A = 1 になった座標値の図]

つぎに、角度αの値を 0 から少しずつ大きくしてみましょう。
最初は、角度が 0 なので三角関数の定義から sin(0) と cos(0) は以下のような値になります。

sin(0) = 0 / 1 = 0
cos(0) = 1 / 1 = 1
[α = 0 になった座標値の図]

後は、角度を少しずつ増やしていくと、 今までの図で分かる通り、X 座標が cos(α)、Y 座標が sin(α) になっています。 例えば、横軸に角度 α、縦軸に sin(α) の値をとってグラフを作ると以下のようになります。

[sin(α) の図 (1/4周)]

さらに、角度を増やしてゆき点を一周させると以下の図が出来上がります。

[sin(α) の図 (1周)]

この図によって sin(α) が波になるのがわかると思います。

同じように、cos(α) の図も描くことができます。
ここでは、図を描きやすいようにX-Y座標を左回りに 90 度傾けていることに注意してください。

[cos(α) の図 (1周)]

これらの図からわかることは、sin と cos の図は円運動をグラフに描いたものだということです。 円運動を横から見るとピストン運動になります。
ここで注目してもらいたいのは cos の図は 90 度右方向にずらすと sin の図とピッタリ重なるということです。 つまり、以下の式が成り立ちます。

cos(α - 90) = sin(α)

sin を cos に重ねる場合は左方向に 90 度ずらせば良いので以下の式が成り立ちます。

sin(α + 90) = cos(α)

参考


Prev | Next
Home | Contents
Mail